Driver of the Positive Ionospheric Storm over the South American Sector during 4 November 2021 Geomagnetic Storm

Author:

Zhai Changzhi,Tang Shenquan,Peng Wenjie,Cheng Xiaoyun,Zheng Dunyong

Abstract

During geomagnetic storms, ionospheric storms can be driven by several mechanisms. Observations performed using ground- and space-based instruments were used to reveal the driver of the positive ionospheric storm over the South American sector during the 4 November 2021 geomagnetic storm. The positive storm appeared from 10:30 UT to 18:00 UT and covered the region from 40°S to 20°N. The maximum magnitudes of TEC (Total Electron Content) enhancement and relative TEC enhancement were about 20 TECU and 100%, respectively. Defense Meteorological Satellite Program (DMSP) also observed a significant electron density increase over South America and the eastern Pacific Ocean. In the meantime, about 50% ∑O/N2 enhancement was observed by the Global-scale Observations of the Limb and Disk (GOLD) satellite at low latitudes. Ionosonde observations (AS00Q and CAJ2M) registered an ~80 km uplift in F2 peak height (HmF2) and a prominent F2 peak electron density (NmF2) increase ~3 h after the uplift. A prominent enhancement in the cross-polar cap potential (CPCP) in the southern hemisphere was also observed by Super Dual Auroral Radar Network (SuperDARN) one hour earlier than the HmF2 uplift. Measurements of the Ionospheric Connection Explorer satellite (ICON) showed that the outward E×B drift was enhanced significantly and that the horizontal ion drift was poleward. According to the ICON ion drift observations, the HmF2 uplift was caused by an electric field rather than equatorward neutral wind. We propose that the enhanced eastward electric field dominated the positive ionospheric storm and that the thermospheric composition variation may have also contributed.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Open Fund of Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote Sensing, Hunan University of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3