Numerical Simulation and Evaluation on Continuum Damage Models of Rocks

Author:

Zhao Leilei,Cui Zhendong,Peng RuidongORCID,Si Kai

Abstract

Damage mechanics play an important role in the analysis of rock deformation and failure. Numerous damage variables have been proposed and the corresponding continuum damage models were suggested. Knowing how to apply these theoretical models appropriately in numerical simulations is the key to whether they can be adopted to solve practical problems. The continuum damage models were grouped into empirical damage models, statistical damage models, and elastoplastic damage models in this article. Their applicability and limitations were studied according to some numerical simulations of the most basic uniaxial compression test of a cylinder rock sample. Three representative damage models were chosen from the literature and applied to FEM numerical simulations by introducing a self-developed program. The stress-strain curves due to damage were obtained from the numerical simulation results and compared to those from the experimental results. The damage distribution and evolution of different damage models were investigated to evaluate their influences on rock deformation. It can be concluded that strain-softening stages presented by both the empirical damage models and the statistical damage models are caused by subtracting the elastic modulus gradually while those presented by the elastoplastic damage models are caused by reducing plastic yield stress gradually. Damage-elastic coupling cannot well reflect the irreversibility of damage. The elastoplastic damage models combine damage with plastic history, and thus the irreversibility of damage can be represented. Furthermore, the compulsory reduction of the elastic modulus can probably lead to extreme element distortion and even an unreasonable negative modulus when damage is very serious, which inevitably causes the numerical simulation to fail prematurely under complex stress states. Although the elastoplastic damage models are recommended at present rather than the other models, a more appropriate definition of the damage variable can be expected that should track the whole deformation and failure process. Knowing how to treat the adverse effect of local deterioration due to damage is the challenge numerical simulations have to face when they are applied in the actual project with complex stress states.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3