Optimal Rotary Wind Turbine Blade Modeling with Bond Graph Approach for Specific Local Sites

Author:

Mohammed Abdulbasit,Sirahbizu Belete,Lemu Hirpa G.ORCID

Abstract

The wind turbine blade is an important component for harnessing wind energy. It plays a vital role in wind turbine operation. In this work, a study was conducted to investigate the dynamic behavior of an optimal rotary wind turbine blade with a bond graph approach simulated with MATLAB/Simulink. The model is considered as a twisted Rayleigh beam which is made of several sections of the type SG6043 airfoil. This type of airfoil is suitable for low wind conditions, and each section is subjected to aerodynamic loads that are computed using the blade element momentum theory. The bond graph model was developed based on the law of conservation of mass and energy in the systems, and then the model was converted to the MATLAB/Simulink toolbox; results were validated with SG6043 airfoil data and real wind data collected from selected specific sites of Abomsa, Metehara, and Ziway areas in Ethiopia.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference35 articles.

1. Analysis of horizontal axis wind turbine blade using CFD

2. Dynamic Response of Flexible Wind Turbine Blade;Yuqiao;Telkomnika,2013

3. Finite Element Analysis of Wind Turbine Blade Vibrations

4. Nonlinear dynamic characteristics of horizontal-axis wind turbine blades including pre-twist

5. Dynamic Model of a Flexible Blade Wind Turbine in an Electrical Grid Control Structure;Lamine;Proceedings of the 4th International Conference on Integrated Modeling and Analysis in Applied Control and Automation,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3