A Cross-Resolution Surface Net Radiative Inversion Based on Transfer Learning Methods

Author:

Miao Shuqi1,He Qisheng1,Zhu Liujun23ORCID,Yu Mingxiao1,Gu Yuhan1,Zhou Mingru1

Affiliation:

1. College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China

2. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China

3. Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China

Abstract

Net radiation (Rn) is a key component of the Earth’s energy balance. With the rise of deep learning technology, remote sensing technology has made significant progress in the acquisition of large-scale surface parameters. However, the generally low spatial resolution of net radiation data and the relative scarcity of surface flux site data at home and abroad limit the potential of deep learning methods in constructing high spatial resolution net radiation models. To address this challenge, this study proposes an innovative approach of a multi-scale transfer learning framework, which assumes that composite models at different spatial scales are similar in structure and parameters, thus enabling the training of accurate high-resolution models using fewer samples. In this study, the Heihe River Basin was taken as the study area and the Rn products of the Global Land Surface Satellite (GLASS) were selected as the target for coarse model training. Based on the dense convolutional network (DenseNet) architecture, 25 deep learning models were constructed to learn the spatial and temporal distribution patterns of GLASS Rn products by combining multi-source data, and a 5 km coarse resolution net radiation model was trained. Subsequently, the parameters of the pre-trained coarse-resolution model were fine-tuned with a small amount of measured ground station data to achieve the transfer from the 5 km coarse-resolution model to the 1 km high-resolution model, and a daily high-resolution net radiation model with 1 km resolution for the Heihe River Basin was finally constructed. The results showed that the bias, R2, and RMSE of the high-resolution net radiation model obtained by transfer learning were 0.184 W/m2, 0.924, and 24.29 W/m2, respectively, which was better than those of the GLASS Rn products. The predicted values were highly correlated with the measured values at the stations and the fitted curves were closer to the measured values at the stations than those of the GLASS Rn products, which further demonstrated that the transfer learning method could capture the soil moisture and temporal variation of net radiation. Finally, the model was used to generate 1 km daily net radiation products for the Heihe River Basin in 2020. This study provides new perspectives and methods for future large-scale and long-time-series estimations of surface net radiation.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3