Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse

Author:

Zhang Hui12,Zhang Ting34ORCID,Zhang Xinyu34ORCID,Yuan Yunbin3,Wang Yifan1,Ma Yutang1

Affiliation:

1. Joint Laboratory of Power Remote Sensing Technology, Electric Power Research Institute, Yunnan Power Grid Company Ltd., Kunming 650217, China

2. Production Technology Department, Yunnan Power Grid Company Ltd., Kunming 650032, China

3. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results show that both GNSS-derived TEC products have detected the ionospheric TEC degradation triggered by the total solar eclipse, with the maximum degradation exceeding 10 TECU. The TEC data from nine GNSS stations in the path of the maximum eclipse reveal that the intensity of ionospheric TEC degradation is related to the spatial location, with the maximum degradation value of the ionospheric TEC being about 14~23 min behind the moment of the maximum eclipse. Additionally, a negative anomaly of foF2 with a maximum of more than 2.7 MHz is detected by ionosonde. In the eclipse region, NmF2 and hmF2 show trends of decrease and increase, with percentages of variation of 40~70% and 4~16%, respectively. The Ne profile of the Swarm-A satellite is significantly lower than the reference value during the eclipse period, with the maximum negative anomaly value reaching 11.2 × 105 el/cm3, and it failed to show the equatorial ionization anomaly.

Funder

Science and Technology Project of the China Southern Power Grid, the Yunnan Power Grid Company Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3