The Induced Expression of BPV E4 Gene in Equine Adult Dermal Fibroblast Cells as a Potential Model of Skin Sarcoid-like Neoplasia

Author:

Podstawski Przemysław,Samiec MarcinORCID,Skrzyszowska MariaORCID,Szmatoła TomaszORCID,Semik-Gurgul EwelinaORCID,Ropka-Molik KatarzynaORCID

Abstract

The equine sarcoid is one of the most common neoplasias in the Equidae family. Despite the association of this tumor with the presence of bovine papillomavirus (BPV), the molecular mechanism of this lesion has not been fully understood. The transgenization of equine adult cutaneous fibroblast cells (ACFCs) was accomplished by nucleofection, followed by detection of molecular modifications using high-throughput NGS transcriptome sequencing. The results of the present study confirm that BPV-E4- and BPV-E1^E4-mediated nucleofection strategy significantly affected the transcriptomic alterations, leading to sarcoid-like neoplastic transformation of equine ACFCs. Furthermore, the results of the current investigation might contribute to the creation of in vitro biomedical models suitable for estimating the fates of molecular dedifferentiability and the epigenomic reprogrammability of BPV-E4 and BPV-E4^E1 transgenic equine ACFC-derived sarcoid-like cell nuclei in equine somatic cell-cloned embryos. Additionally, these in vitro models seem to be reliable for thoroughly recognizing molecular mechanisms that underlie not only oncogenic alterations in transcriptomic signatures, but also the etiopathogenesis of epidermal and dermal sarcoid-dependent neoplastic transformations in horses and other equids. For those reasons, the aforementioned transgenic models might be useful for devising clinical treatments in horses afflicted with sarcoid-related neoplasia of cutaneous and subcutaneous tissues.

Funder

Ministry of Science and Higher Education

National Research Institute of Animal Production

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3