Investigating Glioblastoma Multiforme Sub-Proteomes: A Computational Study of CUSA Fluid Proteomic Data

Author:

Moresi Fabiana,Rossetti Diana Valeria,Vincenzoni FedericaORCID,Simboli Giorgia AntoniaORCID,La Rocca GiuseppeORCID,Olivi Alessandro,Urbani Andrea,Sabatino Giovanni,Desiderio Claudia

Abstract

Based on our previous proteomic study on Cavitating Ultrasound Aspirator (CUSA) fluid pools of Newly Diagnosed (ND) and Recurrent (R) glioblastomas (GBMs) of tumor core and periphery, as defined by 5-aminolevulinc acid (5-ALA) metabolite fluorescence, this work aims to apply a bioinformatic approach to investigate specifically into three sub-proteomes, i.e., Not Detected in Brain (NB), Cancer Related (CR) and Extracellular Vesicles (EVs) proteins following selected database classification. The study of these yet unexplored specific datasets aims to understand the high infiltration capability and relapse rate that characterizes this aggressive brain cancer. Out of the 587 proteins highly confidently identified in GBM CUSA pools, 53 proteins were classified as NB. Their gene ontology (GO) analysis showed the over-representation of blood coagulation and plasminogen activating cascade pathways, possibly compatible with Blood Brain Barrier damage in tumor disease and surgery bleeding. However, the NB group also included non-blood proteins and, specifically, histones correlated with oncogenesis. Concerning CR proteins, 159 proteins were found in the characterized GBM proteome. Their GO analysis highlighted the over-representation of many pathways, primarily glycolysis. Interestingly, while CR proteins were identified in ND-GBM exclusively in the tumor zones (fluorescence positive core and periphery zones) as predictable, conversely, in R-GBM they were unexpectedly characterized prevalently in the healthy zone (fluorescence negative tumor periphery). Relative to EVs protein classification, 60 proteins were found. EVs are over-released in tumor disease and are important in the transport of biological macromolecules. Furthermore, the presence of EVs in numerous body fluids makes them a possible low-invasive source of brain tumor biomarkers to be investigated. These results give new hints on the molecular features of GBM in trying to understand its aggressive behavior and open to more in-depth investigations to disclose potential disease biomarkers.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3