Short-Term Photovoltaic Output Prediction Based on Decomposition and Reconstruction and XGBoost under Two Base Learners

Author:

Xu Weihui1,Wang Zhaoke1,Wang Weishu1,Zhao Jian2,Wang Miaojia1,Wang Qinbao1

Affiliation:

1. School of Energy and Power Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. State Grid Henan Electric Power Company Electric Power Science Research Institute, Zhengzhou 450052, China

Abstract

Photovoltaic power generation prediction constitutes a significant research area within the realm of power system artificial intelligence. Accurate prediction of future photovoltaic output is imperative for the optimal dispatchment and secure operation of the power grid. This study introduces a photovoltaic prediction model, termed ICEEMDAN-Bagging-XGBoost, aimed at enhancing the accuracy of photovoltaic power generation predictions. In this paper, the original photovoltaic power data initially undergo decomposition utilizing the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) algorithm, with each intrinsic mode function (IMF) derived from this decomposition subsequently reconstructed into high-frequency, medium-frequency, and low-frequency components. Targeting the high-frequency and medium-frequency components of photovoltaic power, a limiting gradient boosting tree (XGBoost) is employed as the foundational learner in the Bagging parallel ensemble learning method, with the incorporation of a sparrow search algorithm (SSA) to refine the hyperparameters of XGBoost, thereby facilitating more nuanced tracking of the changes in the photovoltaic power’s high-frequency and medium-frequency components. Regarding the low-frequency components, XGBoost-Linear is utilized to enable rapid and precise prediction. In contrast with the conventional superposition reconstruction approach, this study employs XGBoost for the reconstruction of the prediction output’s high-frequency, intermediate-frequency, and low-frequency components. Ultimately, the efficacy of the proposed methodology is substantiated by the empirical operation data from a photovoltaic power station in Hebei Province, China. Relative to integrated and traditional single models, this paper’s model exhibits a markedly enhanced prediction accuracy, thereby offering greater applicational value in scenarios involving short-term photovoltaic power prediction.

Funder

Project of Central Plains Science and Technology Innovation Leading Talents of Henan Provinc

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3