A Simulation-Based Framework for Manufacturing Design and Resilience Assessment: A Case Study in the Wood Sector

Author:

Longo Francesco,Mirabelli Giovanni,Solina VittorioORCID,Alberto Umberto,De Paola Giuseppe,Giordano Luigi,Ziparo Marco

Abstract

The advent of modern digital technologies offers new opportunities to improve the performance of manufacturing systems from design to monitoring and control during operation. At the same time, the recent COVID-19 pandemic has highlighted the fragility of all global supply chains and manufacturing systems. In this paper, a simulation-based framework, exploiting the benefits of the digital model concept, is proposed. It aims at: (1) supporting manufacturing design to effectively start a new business, (2) assessing the resilience of a manufacturing system in the face of disruptions, (3) evaluating the goodness of possible strategies to deal with COVID-like crises. The validity of the proposed framework is successfully demonstrated through a real-life case study, referring to the wood sector. The results show that a lack of system preparedness can lead to productivity reductions of up to 31.8%. At the same time, having the ability to react to unexpected events can limit damage and increase productivity by 26% compared to not reacting.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3