Abstract
Change detection (CD) is in demand in satellite imagery processing. Inspired by the recent success of the combined transformer-CNN (convolutional neural network) model, TransCNN, originally designed for image recognition, in this paper, we present STDecoder-CD for change detection applications, which is a combination of the Siamese network (“S”), the TransCNN backbone (“T”), and three types of decoders (“Decoder”). The Type I model uses a UNet-like decoder, and the Type II decoder is defined by a combination of three modules: the difference detector, FPN (feature pyramid network), and FCN (fully convolutional network). The Type III model updates the change feature map by introducing a transformer decoder. The effectiveness and advantages of the proposed methods over the state-of-the-art alternatives were demonstrated on several CD datasets, and experimental results indicate that: (1) STDecoder-CD has excellent generalization ability and has strong robustness to pseudo-changes and noise. (2) An end-to-end CD network architecture cannot be completely free from the influence of the decoding strategy. In our case, the Type I decoder often obtained finer details than Types II and III due to its multi-scale design. (3) Using the ablation or replacing strategy to modify the three proposed decoder architectures had a limited impact on the CD performance of STDecoder-CD. To the best of our knowledge, we are the first to investigate the effect of different decoding strategies on CD tasks.
Funder
the soft science research plan item of Zhejiang Province, China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献