STDecoder-CD: How to Decode the Hierarchical Transformer in Change Detection Tasks

Author:

Zhao BoORCID,Luo Xiaoyan,Tang Panpan,Liu Yang,Wan Haoming,Ouyang Ninglei

Abstract

Change detection (CD) is in demand in satellite imagery processing. Inspired by the recent success of the combined transformer-CNN (convolutional neural network) model, TransCNN, originally designed for image recognition, in this paper, we present STDecoder-CD for change detection applications, which is a combination of the Siamese network (“S”), the TransCNN backbone (“T”), and three types of decoders (“Decoder”). The Type I model uses a UNet-like decoder, and the Type II decoder is defined by a combination of three modules: the difference detector, FPN (feature pyramid network), and FCN (fully convolutional network). The Type III model updates the change feature map by introducing a transformer decoder. The effectiveness and advantages of the proposed methods over the state-of-the-art alternatives were demonstrated on several CD datasets, and experimental results indicate that: (1) STDecoder-CD has excellent generalization ability and has strong robustness to pseudo-changes and noise. (2) An end-to-end CD network architecture cannot be completely free from the influence of the decoding strategy. In our case, the Type I decoder often obtained finer details than Types II and III due to its multi-scale design. (3) Using the ablation or replacing strategy to modify the three proposed decoder architectures had a limited impact on the CD performance of STDecoder-CD. To the best of our knowledge, we are the first to investigate the effect of different decoding strategies on CD tasks.

Funder

the soft science research plan item of Zhejiang Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3