“Blurry Touch Finger”: Touch-Based Interaction for Mobile Virtual Reality with Clip-on Lenses

Author:

Kim Youngwon Ryan,Park Suhan,Kim Gerard J.

Abstract

In this paper, we propose and explore a touch screen based interaction technique, called the “Blurry Touch Finger” for EasyVR, a mobile VR platform with non-isolating flip-on glasses that allows the fingers accessible to the screen. We demonstrate that, with the proposed technique, the user is able to accurately select virtual objects, seen under the lenses, directly with the fingers even though they are blurred and physically block the target object. This is possible owing to the binocular rivalry that renders the fingertips semi-transparent. We carried out a first stage basic evaluation assessing the object selection performance and general usability of Blurry Touch Finger. The study has revealed that, for objects with the screen space sizes greater than about 0.5 cm, the selection performance and usability of the Blurry Touch Finger, as applied in the EasyVR configuration, was comparable to or higher than those with both the conventional head-directed and hand/controller based ray-casting selection methods. However, for smaller sized objects, much below the size of the fingertip, the touch based selection was both less performing and usable due to the usual fat finger problem and difficulty in stereoscopic focus.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Daydream VR vs. HTC Vive & Oculus Rift|Mobile VR vs. PChttp://www.pcadvisor.co.uk/review/wearable-tech/daydream-vr-vs-htc-vive-oculus-rift-mobile-vr-vs-pc-vr-3647738/

2. Google Cardboardhttp://vr.google.com/cardboard/

3. Samsung Gear VRhttp://www.samsung.com/global/galaxy/gear-vr/

4. HTC Vivehttp://www.vive.com/kr/

5. Oculus VRhttp://www.oculus.com/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3