Abstract
Due to their excellent heat resistance, superalloys are used predominantly in the manufacturing of engine parts and accessories for aircraft and aerospace equipment. The Monte Carlo simulation (MCNP-5) code was performed to estimate the mean track length of the incident photons inside six different alloys. Then, based on the simulated track length, other important γ-ray shielding parameters were calculated. In this study, the highest mass attenuation coefficient was obtained for alloys encoded MAR-302 and MAR-247 and varied in the range 0.035–72.94 and 0.035–71.98 cm2·g−1, respectively. The lowest mass attenuation coefficient was found for alloys coded Inconel-718 and Nimocast-75 with a range of 0.033–59.25 and 0.32–59.30 cm2·g−1, respectively. Use was made of a recently developed online program Phy-X/PD to calculate the effective atomic number, equivalent atomic number, and the buildup factors for the alloys of interest. The effective removal cross-section for the fast neutron was also calculated for the studied alloys: the highest value was found for the alloys coded with Inconel-718 (∑R = 0.01945 cm2·g−1) and Nimocast-75 (∑R = 0.01940 cm2·g−1), and the lowest value was obtained for alloy coded MAR-302 (∑R = 0.01841 cm2·g−1). Calculated data indicate that MAR-302 and MAR-247 are superior candidates for shielding of gamma-rays, while Inconel-718 and Nimocast-75 MAR-302 are suitable for the shielding of fast neutrons.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献