Economic Efficiency Assessment of Using Wood Waste in Cogeneration Plants with Multi-Stage Gasification

Author:

Marchenko Oleg,Solomin SergeiORCID,Kozlov AlexanderORCID,Shamanskiy Vitaly,Donskoy IgorORCID

Abstract

The aim of this work is to assess the effectiveness of biomass gasification power plants in Russia (Irkutsk region) and compare them with other types of electricity and heat cogeneration systems. Biomass, which is waste from logging and wood processing, is considered as fuel for gasification plants. As a criterion, the cost of energy is used. Analytical relations are obtained for the cost of electric energy at a given cost of thermal energy and vice versa, thermal energy at a given cost of electric energy. These relationships are applied to assess the economic efficiency and compare small-power plants (up to 200–500 kW) such as mini-combined heat and power (CHP) on fuel chips and fuel pellets, coal-fired CHP and gas and liquid fuel power plants (gas-piston and diesel power plants). The latter are equipped with heat recovery boilers and supply consumers with heat and the electric power simultaneously. The calculation results show that the cost of electricity when using wood fuel is significantly less than the cost of electricity from a diesel power plant due to the use of cheaper fuel. In this regard, for autonomous energy systems of small power, especially near logging points, energy supply from biomass gasification power plants is a preferable solution than the use of diesel power plants. Wood fired energy cogeneration systems (mini-CHP) can also successfully compete with coal and gas power plants if they have cheap wood fuel at their location. With the introduction of carbon dioxide emissions charges, the use of not only wood chips, but also pellets becomes competitive in comparison with coal and gas.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

1. Renewables 2020. Global Energy Status,2020

2. World Energy Outlook 2019. Paris https://www.iea.org/reports/world-energy-outlook-2019

3. Studies on competitiveness of space and terrestrial solar power plants using global energy model

4. Climate Change 2014. IPCC Fifth Assessment Synthesis Report,2014

5. Bio-synthetic natural gas as fuel in steel industry reheating furnaces – A case study of economic performance and effects on global CO2 emissions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3