Determining the Fluxes and Relative Importance of Different External Sources and Sinks of Nitrogen to the Israeli Coastal Shelf, a Potentially Vulnerable Ecosystem

Author:

Ben Ezra Tal1ORCID,Tsemel Anat1ORCID,Suari Yair2ORCID,Berman-Frank Ilana3ORCID,Tchernov Danny1,Krom Michael David14ORCID

Affiliation:

1. Morris Kahn Marine Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3103301, Israel

2. The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 4025000, Israel

3. Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3103301, Israel

4. School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

Abstract

While the biogeochemical properties of the Israeli coastal shelf (ICS) are similar to adjacent pelagic waters, the external sources of inorganic nitrogen (N) are very different. The main source of ‘new’ N to the pelagic zone is deep winter mixing, with minor contributions from atmospheric deposition and eddy diffusion across the nutricline. For the ICS, major N sources include offshore water advection (260 × 10⁶ mol N y−¹), atmospheric input (115 × 10⁶ mol N y−¹), and riverine input (138 × 10⁶ mol N y−¹), which primarily consists of treated wastewater and stormwater runoff. Direct pollutant discharge from sewage outfalls and submarine groundwater discharge are relatively minor. Key N sinks are new production (420 × 10⁶ mol N y−¹) and sediment deposition and uptake (145 × 10⁶ mol N y−¹). Inputs of nitrate and ammonium were similar and dominant in winter. Unlike temperate shelves, where riverine input is dominant, here it was only slightly higher than atmospheric input, with net N advection onto the shelf being significant. External N inputs did not change net primary production (NPP) by more than ~30% or affect dominant pico and nanophytoplankton genera, except in localized patches. This study offers baseline values for future climate and environmental change assessments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3