Deep Learning Option Price Movement

Author:

Wang Weiguan1ORCID,Xu Jia1

Affiliation:

1. School of Economics, Shanghai University, 333 Nanchen Road, Baoshan District, Shanghai 200444, China

Abstract

Understanding how price-volume information determines future price movement is important for market makers who frequently place orders on both buy and sell sides, and for traders to split meta-orders to reduce price impact. Given the complex non-linear nature of the problem, we consider the prediction of the movement direction of the mid-price on an option order book, using machine learning tools. The applicability of such tools on the options market is currently missing. On an intraday tick-level dataset of options on an exchange traded fund from the Chinese market, we apply a variety of machine learning methods, including decision tree, random forest, logistic regression, and long short-term memory neural network. As machine learning models become more complex, they can extract deeper hidden relationship from input features, which classic market microstructure models struggle to deal with. We discover that the price movement is predictable, deep neural networks with time-lagged features perform better than all other simpler models, and this ability is universal and shared across assets. Using an interpretable model-agnostic tool, we find that the first two levels of features are the most important for prediction. The findings of this article encourage researchers as well as practitioners to explore more sophisticated models and use more relevant features.

Funder

national natural science foundation of china

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3