Electromagnetic Modeling and Thermal Analysis of a Non-Axisymmetric System for Induction Brazing

Author:

Grozdanov Dragomir,Tarnev KhristoORCID,Hinov NikolayORCID

Abstract

The electromagnetic process happening between an induction brazing coil and the brazing assembly was studied and is described in the following pages. Using the tools of numerical analysis, we managed to achieve 3-D simulation of the process, which includes presentation of the magnetic field, thermal heat transfer, and time dependence. The results presented are considered for two of commonly used materials—copper and stainless steel in the shape of pipes. The induction brazing coil is a complex C-shape to match with the real industrial practices. The results obtained from the model are in accordance with the experimental results, as in both the model and the experiment, the required temperature was reached in about 6 s. It was found that during the brazing process, the inductance of the winding increases by about 4 nH and the resistance by 1.5 mΩ, which is important for the coordination of the power supply.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. Introduction to Brazing Technology;Roberts,2016

2. Handbook of Induction Heating;Rudnev,2017

3. Vacuum Technology: Practical Heat Treating and Brazing

4. Analytical solutions in eddy current testing of layered metals with continuous conductivity profiles

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Model of T-Shaped Inductor for Induction Brazing;2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE);2022-06-30

2. Software for modeling brazing process of spacecraft elements from widely used alloys;2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH);2022-03-16

3. Heat generation depth and temperature distribution in solar receiver tubes subjected to induction;Applied Thermal Engineering;2022-03

4. Synthesis of Induction Brazing System Control Based on Artificial Intelligence;Electronics;2021-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3