Leveraging Public Data to Predict Global Niches and Distributions of Rhizostome Jellyfishes

Author:

Anthony Colin Jeffrey12ORCID,Tan Kei Chloe3ORCID,Pitt Kylie Anne45,Bentlage Bastian1ORCID,Ames Cheryl Lewis2ORCID

Affiliation:

1. Marine Laboratory, University of Guam, Mangilao, GU 96923, USA

2. Graduate School of Agricultural Sciences, Tohoku University, Sendai 980-8572, Japan

3. Faculty of Agriculture, Tohoku University, Sendai 980-8572, Japan

4. Coastal and Marine Research Centre, Griffith Institute for Tourism Research, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia

5. Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Gold Coast Campus, Griffith University, Southport, QLD 4222, Australia

Abstract

As climate change progresses rapidly, biodiversity declines, and ecosystems shift, it is becoming increasingly difficult to document dynamic populations, track fluctuations, and predict responses to climate change. Concurrently, publicly available databases and tools are improving scientific accessibility, increasing collaboration, and generating more data than ever before. One of the most successful projects is iNaturalist, an AI-driven social network doubling as a public database designed to allow citizen scientists to report personal biodiversity reports with accuracy. iNaturalist is especially useful for the research of rare, dangerous, and charismatic organisms, but requires better integration into the marine system. Despite their abundance and ecological relevance, there are few long-term, high-sample datasets for jellyfish, which makes management difficult. To provide some high-sample datasets and demonstrate the utility of publicly collected data, we synthesized two global datasets for ten genera of jellyfishes in the order Rhizostomeae containing 8412 curated datapoints from both iNaturalist (n = 7807) and the published literature (n = 605). We then used these reports in conjunction with publicly available environmental data to predict global niche partitioning and distributions. Initial niche models inferred that only two of ten genera have distinct niche spaces; however, the application of machine learning-based random forest models suggests genus-specific variation in the relevance of abiotic environmental variables used to predict jellyfish occurrence. Our approach to incorporating reports from the literature with iNaturalist data helped evaluate the quality of the models and, more importantly, the quality of the underlying data. We find that free, accessible online data is valuable, yet subject to biases through limited taxonomic, geographic, and environmental resolution. To improve data resolution, and in turn its informative power, we recommend increasing global participation through collaboration with experts, public figures, and hobbyists in underrepresented regions capable of implementing regionally coordinated projects.

Funder

National Science Foundation

University of Guam

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3