DGAN-KPN: Deep Generative Adversarial Network and Kernel Prediction Network for Denoising MC Renderings

Author:

Alzbier Ahmed Mustafa TahaORCID,Chen Chunyi

Abstract

In this paper, we present a denoising network composed of a kernel prediction network and a deep generative adversarial network to construct an end-to-end overall network structure. The network structure consists of three parts: the Kernel Prediction Network (KPN), the Deep Generation Adversarial Network (DGAN), and the image reconstruction model. The kernel prediction network model takes the auxiliary feature information image as the input, passes through the source information encoder, the feature information encoder, and the kernel predictor, and finally generates a prediction kernel for each pixel. The generated adversarial network model is divided into two parts: the generator model and the multiscale discriminator model. The generator model takes the noisy Monte Carlo-rendered image as the input, passes through the symmetric encoder–decoder structure and the residual block structure, and finally outputs the rendered image with preliminary denoising. Then, the prediction kernel and the preliminarily denoised rendered image is sent to the image reconstruction model for reconstruction, and the prediction kernel is applied to the preliminarily denoised rendered image to obtain a preliminarily reconstructed result image. To further improve the quality of the result and to be more robust, the initially reconstructed rendered image undergoes four iterations of filtering for further denoising. Finally, after four iterations of the image reconstruction model, the final denoised image is presented as the output. This denoised image is applied to the loss function. We compared the results from our approach with state-of-the-art results by using the structural similarity index (SSIM) values and peak signal-to-noise ratio (PSNR) values, and we reported a better performance.

Funder

Jilin Provincial Science &Technology Development Program of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3