Influence of Liquid Hydrogen Diffusion on Nonlinear Mixed Convective Circulation around a Yawed Cylinder

Author:

Patil Prabhugouda M.ORCID,Shankar Hadapad F.ORCID,Sheremet Mikhail A.

Abstract

A yawed cylinder is a cylinder inclined in the plane of a flowing liquid. The liquid flow past the yawed cylinder is important for practice, namely, for bubble suppression and control of the boundary layer transition in undersea applications. It should be noted that an inclined cylinder characterizes an asymmetrical behavior of fluid flow and heat transfer. Energy and mass transference characteristics of a steady nonlinear convective flow over the yawed cylinder by accounting for chemically reactive species and viscous dissipation are analyzed in this investigation. The differential equations defining the boundary layer parameters are then transformed into a dimensionless view, taking into account the non-similar transformation. It should be noted that the governing equations have been written using the conservation laws of mass, momentum, energy, and concentration. These considered equations allow the simulation of the analyzed phenomenon using numerical techniques. Further, quasilinearization and implicit finite difference approximation are used to work out the non-dimensional governing equations. A parametric investigation of all the pertinent characteristics accompanies this. A descriptive system of computation outcomes for the velocity, temperature, and concentration patterns, the drag coefficients, Nu and Sh, is demonstrated by graphs. Enhancing the magnitudes of the Eckert number raises the temperature pattern while energy transport strength is reduced. As the species concentration profile diminishes, the mass transfer characteristics are enhanced for raising magnitudes of the nonlinear chemical reaction parameter. Further, a velocity profile along the chordwise direction rises with enhancing magnitudes of nonlinear convection characteristics and yaw angle. Furthermore, the velocity pattern along the spanwise direction enhances with the growing magnitudes of yaw angle. For assisting buoyancy flow, the friction parameter at the border in the spanwise direction enhances with rising values of yaw angle.

Funder

University Grant’s Commission, New-Delhi

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3