Abstract
The performance of classical security authentication models can be severely affected by imperfect channel estimation as well as time-varying communication links. The commonly used approach of statistical decisions for the physical layer authenticator faces significant challenges in a dynamically changing, non-stationary environment. To address this problem, this paper introduces a deep learning-based authentication approach to learn and track the variations of channel characteristics, and thus improving the adaptability and convergence of the physical layer authentication. Specifically, an intelligent detection framework based on a Convolutional-Long Short-Term Memory (Convolutional-LSTM) network is designed to deal with channel differences without knowing the statistical properties of the channel. Both the robustness and the detection performance of the learning authentication scheme are analyzed, and extensive simulations and experiments show that the detection accuracy in time-varying environments is significantly improved.
Funder
school research foundation of BISTU
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献