WCNN3D: Wavelet Convolutional Neural Network-Based 3D Object Detection for Autonomous Driving

Author:

Alaba Simegnew YihunieORCID,Ball John E.ORCID

Abstract

Three-dimensional object detection is crucial for autonomous driving to understand the driving environment. Since the pooling operation causes information loss in the standard CNN, we designed a wavelet-multiresolution-analysis-based 3D object detection network without a pooling operation. Additionally, instead of using a single filter like the standard convolution, we used the lower-frequency and higher-frequency coefficients as a filter. These filters capture more relevant parts than a single filter, enlarging the receptive field. The model comprises a discrete wavelet transform (DWT) and an inverse wavelet transform (IWT) with skip connections to encourage feature reuse for contrasting and expanding layers. The IWT enriches the feature representation by fully recovering the lost details during the downsampling operation. Element-wise summation was used for the skip connections to decrease the computational burden. We trained the model for the Haar and Daubechies (Db4) wavelets. The two-level wavelet decomposition result shows that we can build a lightweight model without losing significant performance. The experimental results on KITTI’s BEV and 3D evaluation benchmark show that our model outperforms the PointPillars-based model by up to 14% while reducing the number of trainable parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference50 articles.

1. Waymo Driver-Waymo,2022

2. Self-Driving Car Technology—Between Man and Machine;Dechant,2022

3. Improving interpretability of deep neural networks with semantic information;Dong;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017

4. Visualizing and understanding convolutional networks;Zeiler;Proceedings of the European Conference on Computer Vision,2014

5. Multi-scale context aggregation by dilated convolutions;Yu;arXiv,2015

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3