Complete Solution-Processed Semitransparent and Flexible Organic Solar Cells: A Success of Polyimide/Ag-Nanowires- and PH1000-Based Electrodes with Plasmonic Enhanced Light Absorption

Author:

Wang Jing,Liang Xiangfei,Xie Jianing,Yin Xiaolong,Chen Jinhao,Gu Tianfu,Mo Yueqi,Zhao Jianqing,Liu Shumei,Yu Donghong,Zhang Jibin,Hou LintaoORCID

Abstract

Organic solar cells (OSCs) have been widely studied due to the advantages of easy fabrication, low cost, light weight, good flexibility and sufficient transparency. In this work, flexible and semitransparent OSCs were successfully fabricated with the adoption of both polyimide/silver nanowires (PI/AgNW) and a conducting polymer PEDOT:PSS named PH1000 as the transparent conductive electrodes (TCEs). It is demonstrated that PI/AgNW is more suitable as a cathode rather than an anode in the viewpoint of its work function, photovoltaic performance, and simulations of optical properties. It is also found that the light incidence from PH1000 TCE can produce more plasmonic-enhanced photon absorption than the PI/AgNW electrode does, resulting in more high power conversion efficiency. Moreover, a high light transmittance of 33.8% and a decent efficiency of 3.88% are achieved for the whole all-flexible semitransparent device with only 9% decrease of resistance in PI/AgNW after 3000 bending cycles. This work illustrates that PI/AgNW has great potential and bright prospect in large-area OSC applications in the future.

Funder

Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province

Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology

NSFC

Guangdong Provincial Key Laboratory of Semiconductor Micro Display

Guangdong Science and Technology Research Foundation

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3