Multi Frequency Controllable In-Band Suppressions in a Broad Bandwidth Microstrip Filter Design for 5G Wi-Fi and Satellite Communication Systems Utilizing a Quad-Mode Stub-Loaded Resonator

Author:

Zhang Guoqiang1,Basit Abdul12ORCID,Khan Muhammad Irshad3ORCID,Daraz Amil12ORCID,Saqib Najmus4,Zubir Farid5ORCID

Affiliation:

1. School of Information Science and Engineering, NingboTech University, Ningbo 315100, China

2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China

3. College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210000, China

4. Department of Electrical Engineering, University of Engineering and Technology, Peshawar 25000, Pakistan

5. Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia

Abstract

The key elements used for receiving and processing signals in communication systems are the bandpass filters. Initially, a common operating mechanism was applied for the design of broadband filters, i.e., by cascading low-pass filters or high-pass filters using multiple line resonators with length quarter-half- or full-wavelength with central frequency, but using these approaches, the design topology becomes expensive and complex. The above mechanisms can be possibly overcome using a planar microstrip transmission line structure due to its simple design fabrication procedure and low cost. So, pointing out the above problems in bandpass filters such as low-cost, low insertion loss, and good out-of-band performance, this article presents a broadband filter with multifrequency suppression capability at 4.9 GHz, 8.3 GHz, and 11.5 GHz using a T-shaped shorted stub-loaded resonator with a central square ring coupled to the basic broadband filter. Initially, the C-shaped resonator is utilized for the formation of a stopband at 8.3 GHz for a satellite communication system, and then a shorted square ring resonator is added to the existing C-shaped structure for the realization of two more stopbands at 4.9 GHz and 11.5 GHz for 5G (WLAN 802.11j) communication, respectively. The overall circuit area covered with the proposed filter is 0.52 λg × 0.32 λg (λg is the wavelength of the feed lines at frequency 4.9 GHz). All the loaded stubs are folded in order to save the circuit area, which is an important requirement of next-generation wireless communication systems. The proposed filter has been analyzed using a well-known transmission line theory, even–odd-mode, and simulated with the 3D software HFSS. After the parametric analysis, some attractive features were obtained, i.e., compact structure, simple planar topology, low insertion losses of 0.4 dB over the entire band, good return loss greater than 10 dB, and independently controlled mutli stopbands, which make the proposed design unique and can be used in various wireless communication system applications. Finally, a Rogers RO-4350 substrate is selected for the fabrication of the prototype using an LPKF S63 ProtoLaser machine and then measured using a ZNB20 vector network analyzer for matching the simulated and measured results. After testing the prototype, a good agreement was found between the results.

Funder

Young Talent Sub-project of Ningbo Yongjiang Talent Introduction Programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3