Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection

Author:

Tahir Hassam1,Jung Eun-Sung1ORCID

Affiliation:

1. Department of Software & Communications Engineering, Hongik University, Sejong 30016, Republic of Korea

Abstract

This paper delves into image detection based on distributed deep-learning techniques for intelligent traffic systems or self-driving cars. The accuracy and precision of neural networks deployed on edge devices (e.g., CCTV (closed-circuit television) for road surveillance) with small datasets may be compromised, leading to the misjudgment of targets. To address this challenge, TensorFlow and PyTorch were used to initialize various distributed model parallel and data parallel techniques. Despite the success of these techniques, communication constraints were observed along with certain speed issues. As a result, a hybrid pipeline was proposed, combining both dataset and model distribution through an all-reduced algorithm and NVlinks to prevent miscommunication among gradients. The proposed approach was tested on both an edge cluster and Google cluster environment, demonstrating superior performance compared to other test settings, with the quality of the bounding box detection system meeting expectations with increased reliability. Performance metrics, including total training time, images/second, cross-entropy loss, and total loss against the number of the epoch, were evaluated, revealing a robust competition between TensorFlow and PyTorch. The PyTorch environment’s hybrid pipeline outperformed other test settings.

Funder

IITP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3