Maximization of FDM-3D-Objects Gonio-Appearance Effects Using PLA and ABS Filaments and Combining Several Printing Parameters: “A Case Study”

Author:

Micó-Vicent BàrbaraORCID,Perales Esther,Huraibat Khalil,Martínez-Verdú Francisco Miguel,Viqueira Valentín

Abstract

In order to consider 3D objects from suitable Fused Deposition Modelling (FDM) printers as prototypes for the automotive sector, this sample must be able to reproduce textural effects (sparkle or graininess) or metallic or gonio-appearance to reinforce the attractive appeal of these materials. This study worked with two different commercial filaments: grey metallic PLA (poly(lactic acid)) and ABS (acrylonitrile-butadiene-styrene copolymer) with diffractive pigments. For both materials, a statistical design of experiments (DoE) was carried out to find the printing parameters effect on the final 3D-objects gonio-appearance. The selected printing parameters were printing speed (2 levels), layer height (2 levels) and sample thickness (3 levels). Twelve smooth square objects were printed from each material. The ABS-diffractive filaments achieved the most significant flop and higher sparkle values than metallic PLA. Graininess was high when working with PLA filaments instead of ABS. Layer height was the most significant parameter to maximize PLA objects’ flop or sparkle effects. The best result was found when printing at 0.1 mm. For the ABS samples, the stronger flop and sparkle effects were achieved with the 50 mm/s printing speed, the 0.1 mm layer height and the lowest thickness level. This study shows the methodology to study the printing parameters effects and interactions to maximize the FDM-3D-objects gonio-appearance.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3