Inversion of Tidal Flat Topography Based on the Optimised Inundation Frequency Method—A Case Study of Intertidal Zone in Haizhou Bay, China

Author:

Ma Shengxin1,Wang Nan1ORCID,Zhou Lingling12,Yu Jing1,Chen Xiao1,Chen Yanyu3

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China

2. Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China

3. Marine Academy of Zhejiang Province, Hangzhou 310012, China

Abstract

Coastal tidal flat wetlands are valuable natural resources that provide diverse habitats and important ecological barriers. The physical environment of the intertidal zone poses many challenges to the monitoring of tidal flat topography, making it difficult to implement traditional measurement methods, and satellite remote sensing combined with tide level information makes it possible to invert coastal tidal flat topography more conveniently over large areas. Current methods based on inundation frequency fail to consider the effect of water level distribution of remote sensing images, and usually use all available remote sensing images. However, the uneven distribution of image tide levels will increase the error of the tidal flat construction. Therefore, in this study, according to the distribution characteristics of the water level in remote sensing images, we adaptively exclude the images with a concentrated water level distribution, so as to make the water level distribution more uniform, and thus reduce the topographic inversion error. The validation results of the inversion accuracy show that the root mean squared error of the tidal flat topographic inversion improved by about 5 cm compared with the previous inundation frequency method, which is suitable for reconstructing the tidal flat topography on a large scale and a long-time scale, and it can be used as a basis for coastal tidal flat protection and restoration decision making.

Funder

Key Laboratory of Ocean Space Resource Management Technology

National Natural Science Funds of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3