Comparative Analysis of Aerosol Vertical Characteristics over the North China Plain Based on Multi-Source Observation Data

Author:

Wang Fei1,Li Zhanqing2ORCID,Jiang Qi3,Ren Xinrong24ORCID,He Hao2ORCID,Tang Yahui1,Dong Xiaobo5,Sun Yele6,Dickerson Russell R.2

Affiliation:

1. CMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing 100081, China

2. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD 20742, USA

3. National Meteorological Centre, Beijing 100081, China

4. Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD 20740, USA

5. Weather Modification Office of Hebei Province, Shijiazhuang 050021, China

6. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

In this paper, multi-source observation, such as aircraft, ground-based remote sensing, and satellite-retrieved data, has been utilized to compare and analyze the vertical characteristics of aerosol optical properties and the planetary boundary layer height (HPBL) over the North China Plain (NCP) region during May–June 2016. Aircraft observations show the vertical profiles of aerosol absorption coefficients (σabs), scattering coefficients (σsca), and extinction coefficients (σext) gradually decrease with altitude, with their maximum values near HPBL. The vertical profiles of σext depended most on the vertical distribution of measured σsca, indicating a significant contribution of scattering aerosols. In addition, the prominent characteristic of the inverse relationship between σext and moisture profile could serve as a reference for predicting air quality in the NCP region. The lower layer pollution during the field experiment was likely caused by the accumulation of fine-mode aerosols, characterized by the vertical distribution of the Ångström exponent and the Aerosol Robotic Network (AERONET) products. Typically, HPBL derived from aircraft and surface Micro Pulse Lidar (MPL) was approximate, while the predicted HPBL by meteorological data indicates an underestimation of ~192 m. Aerosol optical depth (AOD) calculated from aircraft and ground-based remote sensing (such as MPL and AERONET) experienced a strong correlation, and both of them exhibited a similar tendency. However, the AOD retrieved from satellites was significantly larger than that from aircraft and ground-based remote sensing. Overall, the inversion algorithm, cloud identification algorithm, representativeness of the space, and time of the observation may lead to an overestimation or underestimation of AOD under certain circumstances. This study may serve as a re-evaluation of AOD retrieved from multi-source observations and provide a reference to uncover the actual atmospheric environment in the NCP regions.

Funder

CMA Innovative and Development Program

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3