Abstract
Water detection from Synthetic Aperture Radar (SAR) images has been widely utilized in various applications. However, it remains an open challenge due to the high similarity between water and shadow in SAR images. To address this challenge, a new end-to-end framework based on deep learning has been proposed to automatically classify water and shadow areas in SAR images. This end-to-end framework is mainly composed of three parts, namely, Multi-scale Spatial Feature (MSF) extraction, Multi-Level Selective Attention Network (MLSAN) and the Improvement Strategy (IS). Firstly, the dataset is input to MSF for multi-scale low-level feature extraction via three different methods. Then, these low-level features are fed into the MLSAN network, which contains the Encoder and Decoder. The Encoder aims to generate different levels of features using residual network of 101 layers. The Decoder extracts geospatial contextual information and fuses the multi-level features to generate high-level features that are further optimized by the IS. Finally, the classification is implemented with the Softmax function. We name the proposed framework as MSF-MLSAN, which is trained and tested using millimeter wave SAR datasets. The classification accuracy reaches 0.8382 and 0.9278 for water and shadow, respectively; while the overall Intersection over Union (IoU) is 0.9076. MSF-MLSAN demonstrates the success of integrating SAR domain knowledge and state-of-the-art deep learning techniques.
Funder
National Natural Science Foundation of China
Hunan Provincial Education Department
Subject
General Earth and Planetary Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献