UAV-Borne LiDAR Crop Point Cloud Enhancement Using Grasshopper Optimization and Point Cloud Up-Sampling Network

Author:

Chen JianORCID,Zhang ZichaoORCID,Zhang Kai,Wang Shubo,Han YuORCID

Abstract

Because of low accuracy and density of crop point clouds obtained by the Unmanned Aerial Vehicle (UAV)-borne Light Detection and Ranging (LiDAR) scanning system of UAV, an integrated navigation and positioning optimization method based on the grasshopper optimization algorithm (GOA) and a point cloud density enhancement method were proposed. Firstly, a global positioning system (GPS)/inertial navigation system (INS) integrated navigation and positioning information fusion method based on a Kalman filter was constructed. Then, the GOA was employed to find the optimal solution by iterating the system noise variance matrix Q and measurement noise variance matrix R of Kalman filter. By feeding the optimal solution into the Kalman filter, the error variances of longitude were reduced to 0.00046 from 0.0091, and the error variances of latitude were reduced to 0.00034 from 0.0047. Based on the integrated navigation, an UAV-borne LiDAR scanning system was built for obtaining the crop point. During offline processing, the crop point cloud was filtered and transformed into WGS-84, the density clustering algorithm improved by the particle swarm optimization (PSO) algorithm was employed to the clustering segment. After the clustering segment, the pre-trained Point Cloud Up-Sampling Network (PU-net) was used for density enhancement of point cloud data and to carry out three-dimensional reconstruction. The features of the crop point cloud were kept under the processing of reconstruction model; meanwhile, the density of the crop point cloud was quadrupled.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3