Heterometallic CoIIIZnII Schiff Base Catalyst for Mild Hydroxylation of C(sp3)–H Bonds of Unactivated Alkanes: Evidence for Dual Mechanism Controlled by the Promoter

Author:

Nesterova Oksana,Kasyanova Katerina,Buvaylo Elena,Vassilyeva Olga,Skelton Brian,Nesterov Dmytro,Pombeiro Armando

Abstract

The novel Schiff base complex [CoIIIZnIIL3Cl2]·CH3OH (1) was synthesized by interaction of zinc powder, cobalt(II) chloride and methanol solution of the pre-formed HL in air (HL is the product of condensation of o-vanillin and methylamine) and characterized by IR, UV-Vis and NMR spectroscopy, ESI-MS and single crystal X-ray diffraction analysis. In the heterometallic core of 1 the two metal centers are bridged by deprotonated phenoxy groups of the L− ligands with the cobalt-zinc separation of 3.123 Å. Catalytic investigations demonstrated a pronounced activity of 1 towards mild alkane oxidation with m-chloroperbenzoic acid (m-CPBA) as an oxidant and cis-1,2-dimethylcyclohexane (cis-1,2-DMCH) as the model substrate. The influence of the nature of different promoting agents of various acidities (from HOTf to pyridine) on the catalytic process was studied in detail and a pronounced activity of 1 in the presence of nitric acid promoter was found, also showing a high retention of stereoconfiguration of the substrate (>99% for cis-1,2-DMCH). The best achieved yield of tertiary cis-alcohol based on the oxidant was 61%, with a turnover number (TON) of 198 for nitric acid as promoter. The 18O-incorporations into the alcohols when the reactions were performed under 18O2 atmosphere using acetic and nitric acid promoters, suggest that the cis-1,2-DMCH hydroxylation proceeds by two distinct pathways, a non-stereoselective and a stereoselective one (with and without involvement of a long-lived free carbon radical, respectively). The former dominates in the case of acetic acid promoter and the latter is realized in the case of HNO3 promoter.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3