A Sequential Approach for Integrated Coal and Gas Mining of Closely-Spaced Outburst Coal Seams: Results from a Case Study Including Mine Safety Improvements and Greenhouse Gas Reductions

Author:

Cheng LiangORCID,Ge Zhaolong,Chen Jiufu,Ding Hao,Zou Lishuang,Li Ke

Abstract

Closely-spaced outburst coal seams (COCS) is the main condition of coal seams in southwest China, and gas disasters are one of the major problems affecting coal mine safety. Mining a protective seam and pre gas extraction are the most safety way to improve the efficiency of mining under these conditions. However, low pre-mining gas extraction efficiency coupled with the close proximity of adjacent working faces is a problem. When mining at an old working face has been completed but the new working face is not yet ready to be mined, coal-bed gasses can flow into the new working face from adjacent seams and this commonly causes methane monitoring instruments to sound an alarm. These gas extraction difficulties lead to a conflict between mine safety and profit. To solve these problems, a sequential approach for integrated coal and gas mining of closely-spaced outburst coal seams is introduced in this paper. Two fundamental principles are proposed: (1) Fully coordinating the spatiotemporal relationships between gas extraction, roadway development, and coal mining to maximize both mine safety and coal and gas production; (2) Defining a mining sequence for outburst coal seams and choosing the coal seam with the weakest outburst risk as the protective seam. A system for comprehensive gas extraction in underground coal mines is divided into four stages for gas extraction: gas extraction before coal roadway tunneling, gas extraction before coal mining, gas extraction during coal mining, and gas extraction from the goaf after coal mining. The Songzao mining area, China, is used as a case study to demonstrate the effectiveness of this model, and it brings three major benefits: it improves underground coal mine safety with physical gas accidents decreased by 66.8%, it makes underground coal-bed methane (CBM) extraction more efficient with the average gas extraction rate were respectively 45.13 m3/t and 62.4%, the highest in China, and it reduces greenhouse gas emissions equivalent to 3.5 million tonnes of carbon dioxide. This study could be used as a valuable example for other coal deposits being mined under similar geological conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3