POD Analysis of Entropy Generation in a Laminar Separation Boundary Layer

Author:

Jin Chao,Ma Hongwei

Abstract

Separation of laminar boundary layer is a great source of loss in energy and power machinery. This paper investigates the entropy generation of the boundary layer on the flat plate with pressure gradient. The velocity of the flow field is measured by a high resolution and time related particle image velocimetry (PIV) system. A method to estimate the entropy generation of each mode extracted by proper orthogonal decomposition (POD) is introduced. The entropy generation of each POD mode caused by mean viscous, Reynolds normal stress, Reynolds sheer stress, and energy flux is analyzed. The first order mode of the mean viscous term contributes almost 100% of the total entropy generation. The first three order modes of the Reynolds sheer stress term contribute less than 10% of the total entropy generation in the fore part of the separation bubble, while it reaches to more than 95% in the rear part of the separation bubble. It indicates that the more unsteady that the flow is, the higher contribution rate of the Reynolds sheer stress term makes. The energy flux term plays an important role in the turbulent kinetic energy balance in the transition region.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines

2. Entropy Generation Through Heat and Fluid Flow

3. Entropy Based Design and Analysis of Fluids Engineering Systems;Naterer,2008

4. Entropy Generation Minimization;Bejan,1995

5. Calculating entropy with CFD;Enrico;Mech. Eng.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3