Hyperspectral Image Classification Based on Dense Pyramidal Convolution and Multi-Feature Fusion

Author:

Zhang Junsan12,Zhao Li1,Jiang Hongzhao3,Shen Shigen4ORCID,Wang Jian5ORCID,Zhang Peiying12ORCID,Zhang Wei6,Wang Leiquan1

Affiliation:

1. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China

2. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

3. The Sixth Research Institute of China Electronics Corporation, Beijing 100083, China

4. School of Information Engineering, Huzhou University, Huzhou 313000, China

5. College of Science, China University of Petroleum (East China), Qingdao 266580, China

6. Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China

Abstract

In recent years, hyperspectral image classification techniques have attracted a lot of attention from many scholars because they can be used to model the development of different cities and provide a reference for urban planning and construction. However, due to the difficulty in obtaining hyperspectral images, only a limited number of pixels can be used as training samples. Therefore, how to adequately extract and utilize the spatial and spectral information of hyperspectral images with limited training samples has become a difficult problem. To address this issue, we propose a hyperspectral image classification method based on dense pyramidal convolution and multi-feature fusion (DPCMF). In this approach, two branches are designed to extract spatial and spectral features, respectively. In the spatial branch, dense pyramid convolutions and non-local blocks are used to extract multi-scale local and global spatial features in image samples, which are then fused to obtain spatial features. In the spectral branch, dense pyramidal convolution layers are used to extract spectral features in image samples. Finally, the spatial and spectral features are fused and fed into fully connected layers to obtain classification results. The experimental results show that the overall accuracy (OA) of the method proposed in this paper is 96.74%, 98.10%, 98.92% and 96.67% on the four hyperspectral datasets, respectively. Significant improvements are achieved compared to the five methods of SVM, SSRN, FDSSC, DBMA and DBDA for hyperspectral classification. Therefore, the proposed method can better extract and exploit the spatial and spectral information in image samples when the number of training samples is limited. Provide more realistic and intuitive terrain and environmental conditions for urban planning, design, construction and management.

Funder

Shandong Provincial Natural Science Foundation, China

Industry-university Research Innovation Foundation of Ministry of Education of China

Major Scientific and Technological Projects of CNPC

Open Foundation of State Key Laboratory of Integrated Services Networks

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mutually Guided Dendritic Neural Models;Communications in Computer and Information Science;2023-11-26

2. Improved SR-SSIM Band Selection Method Based on Band Subspace Partition;Remote Sensing;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3