Research on Relation Classification Tasks Based on Cybersecurity Text

Author:

Shi Ze1,Li Hongyi12,Zhao Di12,Pan Chengwei34ORCID

Affiliation:

1. School of Cyber Science and Technology, Beihang University, Beijing 100191, China

2. School of Mathematical Sciences, Beihang University, Beijing 100191, China

3. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China

4. Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beijing 100191, China

Abstract

Relation classification is a significant task within the field of natural language processing. Its objective is to extract and identify relations between two entities in a given text. Within the scope of this paper, we construct an artificial dataset (CS13K) for relation classification in the realm of cybersecurity and propose two models for processing such tasks. For any sentence containing two target entities, we first locate the entities and fine-tune the pre-trained BERT model. Next, we utilize graph attention networks to iteratively update word nodes and relation nodes. A new relation classification model is constructed by concatenating the updated vectors of word nodes and relation nodes. Our proposed model achieved exceptional performance on the SemEval-2010 task 8 dataset, surpassing previous approaches with a remarkable F1 value of 92.3%. Additionally, we propose the integration of a ranking-based voting mechanism into the existing model. Our best results are an F1 value of 92.5% on the SemEval-2010 task 8 dataset and a value 94.6% on the CS13K dataset. These findings highlight the effectiveness of our proposed models in tackling relation classification tasks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3