Radar Timing Range–Doppler Spectral Target Detection Based on Attention ConvLSTM in Traffic Scenes

Author:

Jia Fengde1ORCID,Tan Jihong1,Lu Xiaochen1ORCID,Qian Junhui2ORCID

Affiliation:

1. School of Information Science and Technology, Donghua University, Shanghai 201620, China

2. School of Microelectronic and Communication Engineering, Chongqing University, Chongqing 400044, China

Abstract

With the development of autonomous driving and the emergence of various intelligent traffic scenarios, object detection technology based on deep learning is more and more widely applied to real traffic scenarios. Commonly used detection devices include LiDAR and cameras. Since the implementation of traffic scene target detection technology requires mass production, the advantages of millimeter-wave radar have emerged, such as low cost and no interference from the external environment. The performance of LiDAR and cameras is greatly reduced due to their sensitivity to light, which affects target detection at night and in bad weather. However, millimeter-wave radar can overcome the influence of these harsh environments and has a great auxiliary effect on safe driving on the road. In this work, we propose a deep-learning-based object detection method considering the radar range–Doppler spectrum in traffic scenarios. The algorithm uses YOLOv8 as the basic architecture, makes full use of the time series characteristics of range–Doppler spectrum data in traffic scenarios, introduces the ConvLSTM network, and exerts the ability to process time series data. In order to improve the model’s ability to detect small objects, an efficient and lightweight Efficient Channel Attention (ECA) module is introduced. Through extensive experiments, our model shows better performance on two publicly available radar datasets, CARRADA and RADDet, compared to other state-of-the-art methods. Compared with other mainstream methods that can only achieve 30–60% mAP performance when the IOU is 0.3, our model can achieve 74.51% and 75.62% on the RADDet and CARRADA datasets, respectively, and has better robustness and generalization ability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3