Assessing the Applicability of Three Precipitation Products, IMERG, GSMaP, and ERA5, in China over the Last Two Decades

Author:

Zhou Hongwu1ORCID,Ning Shan1ORCID,Li Da1,Pan Xishan2,Li Qiao1,Zhao Min1,Tang Xiao1

Affiliation:

1. School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China

2. Tidal Flat Research Center of Jiangsu Province, Nanjing 210023, China

Abstract

The accuracy of gridded precipitation products is uncertain in different temporal and spatial dimensions. Analyzing the applicability of precipitation products is a prerequisite before applying them to hydrometeorological and other related research. In this study, we selected three gridded precipitation products, Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG), Global Satellite Mapping of Precipitation (GSMaP), and the fifth generation of atmospheric reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA5), including their data from 2001 to 2020. Using the data from 699 ground observation stations, we evaluated the applicability of these three precipitation products in China. Based on five statistical and five classification indicators, we first assessed the applicability of the three precipitation products on daily, monthly, and annual time scales, respectively, and then evaluated their applicability in different spatial dimensions, including basins, agriculture, and geomorphology. The results showed that: (1) IMERG data had the best accuracy on annual and monthly time scales, with both correlation coefficient (CC) values greater than 0.95 and Kling–Gupta efficiency (KGE) values greater than 0.90. On a daily time scale, the accuracy of all three precipitation products differed when statistical or categorical indicators were considered alone. However, the applicability of IMERG data was best among the three precipitation products when both types of indicators were considered. (2) The accuracy of the three precipitation products gradually decreased along the southeast–northwest direction. The applicability of ERA5 data was better in northern regions than in other regions in China, especially in arid and semi-arid regions in northern China. The applicability of IMERG data was better in southern regions with more precipitation and in high-altitude regions than in other regions in China. (3) The applicability of the three precipitation products in plain areas was generally better than in mountain areas. Among them, ERA5 data were more accurate in plain areas, while IMERG data were more accurate in mountain areas. This study can provide a reference for the selection of data sources of gridded precipitation products in different time scales and spatial dimensions in China.

Funder

Jiangsu Provincial Marine Science and Technology Innovation Special Project

Ecological Environment Monitoring Research Fund of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3