A Secure Data-Sharing Model Resisting Keyword Guessing Attacks in Edge–Cloud Collaboration Scenarios

Author:

Li Ye1,Xiong Mengen1ORCID,Yuan Junling1ORCID,Zhang Qikun1ORCID,Zhu Hongfei2

Affiliation:

1. School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, China

2. Key Laboratory of Big Data Intelligent Computing, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

In edge–cloud collaboration scenarios, data sharing is a critical technological tool, yet smart devices encounter significant challenges in ensuring data-sharing security. Attribute-based keyword search (ABKS) is employed in these contexts to facilitate fine-grained access control over shared data, allowing only users with the necessary privileges to retrieve keywords. The implementation of secure data sharing is threatened since most of the current ABKS protocols cannot resist keyword guessing attacks (KGAs), which can be launched by an untrusted cloud server and result in the exposure of sensitive personal information. Using attribute-based encryption (ABE) as the foundation, we build a secure data exchange paradigm that resists KGAs in this work. In our paper, we provide a secure data-sharing framework that resists KGAs and uses ABE as the foundation to achieve fine-grained access control to resources in the ciphertext. To avoid malicious guessing of keywords by the cloud server, the edge layer computes two encryption session keys based on group key agreement (GKA) technology, which are used to re-encrypt the data user’s secret key of the keyword index and keyword trapdoor. The model is implemented using the JPBC library. According to the security analysis, the model can resist KGAs in the random oracle model. The model’s performance examination demonstrates its feasibility and lightweight nature, its large computing advantages, and lower storage consumption.

Funder

National Natural Science Foundation of China

the key technologies R&D Program of Henan Province

Key Laboratory of Big Data Intelligent Computing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3