Improved YOLOv8 for Dangerous Goods Detection in X-ray Security Images

Author:

Wang Aili1ORCID,Yuan Pengfei1,Wu Haibin1ORCID,Iwahori Yuji2ORCID,Liu Yan3

Affiliation:

1. Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China

2. Computer Science, Chubu University, Kasugai 487-8501, Japan

3. College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China

Abstract

X-ray security images face significant challenges due to complex backgrounds, item overlap, and multi-scale target detection. Traditional methods often struggle to accurately identify objects, especially under cluttered conditions. This paper presents an advanced detection model, called YOLOv8n-GEMA, which incorporates several enhancements to address these issues. Firstly, the generalized efficient layer aggregation network (GELAN) module is employed to augment the feature fusion capabilities. Secondly, to tackle the problems of overlap and occlusion in X-ray images, the efficient multi-scale attention (EMA) module is utilized, effectively managing the feature capture and interdependencies among overlapping items, thereby boosting the model’s detection capability in such scenarios. Lastly, addressing the diverse sizes of items in X-ray images, the Inner-CIoU loss function uses auxiliary bounding boxes at varying scale ratios for loss calculation, ensuring faster and more effective bounding box predictions. The enhanced YOLOv8 model was tested on the public datasets SIXRay, HiXray, CLCXray, and PIDray, where the improved model’s mean average precision (mAP) reached 94.4%, 82.0%, 88.9%, and 85.9%, respectively, showing improvements of 3.6%, 1.6%, 0.9%, and 3.4% over the original YOLOv8. These results demonstrate the effectiveness and universality of the proposed method. Compared to current mainstream X-ray images of dangerous goods detection models, this model significantly reduces the false detection rate of dangerous goods in X-ray security images and achieves substantial improvements in the detection of overlapping and multi-scale targets, realizing higher accuracy in dangerous goods detection.

Funder

Key Research and Development Plan Project of Heilongjiang

Natural Science Foundation of Heilongjiang Province

Science and Technology Project of Heilongjiang Provincial Department of Transportation

high-end foreign expert introduction program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3