Generative Adversarial Network-Based Voltage Fault Diagnosis for Electric Vehicles under Unbalanced Data

Author:

Fang Weidong12,Guo Yihan12,Zhang Ji12

Affiliation:

1. School of Electrical, Electronics and Physics, Fujian University of Technology, Fuzhou 350001, China

2. Fujian Key Laboratory of Automotive Electronics and Electric Drive Technology, Fuzhou 350001, China

Abstract

The research of electric vehicle power battery fault diagnosis technology is turning to machine learning methods. However, during operation, the time of occurrence of faults is much smaller than the normal driving time, resulting in too small a proportion of fault data as well as a single fault characteristic in the collected data. This has hindered the research progress in this field. To address this problem, this paper proposes a data enhancement method using Least Squares Generative Adversarial Networks (LSGAN). The method consists of training the original power battery fault dataset using LSGAN models to generate diverse sample data representing various fault states. The augmented dataset is then used to develop a fault diagnosis framework called LSGAN-RF-GWO, which combines a random forest (RF) model with a Gray Wolf Optimization (GWO) model for effective fault diagnosis. The performance of the framework is evaluated on the original and enhanced datasets and compared with other commonly used models such as Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Naïve Bayes (NB). The results show that the proposed fault diagnosis scheme improves the evaluation metrics and accuracy level, proving that the LSGAN-RF-GWO framework can utilize limited data resources to effectively diagnose power battery faults.

Funder

Fuzhou Municipal Science and Technology Bureau

Development and Demonstration of Regulatory Service System for New Energy Vehicles in Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3