Abstract
A flexible antenna of compact size with a dual band elliptical-shape implantable is designed for biomedical purposes. The suggested antenna has an elliptical shape to be more comfortable for being implanted in human tissue. The implantable antenna is printed on RO3010 substrate with 2 mm as a thickness and 10.2 as a dielectric constant. It consists of an active planar C-shaped element and a parasitic planar inverted C-shaped element. The proposed antenna is designed with a major axis radius of 12 mm and a minor axis radius of 8 mm. It operates in dual bands: The Industrial Scientific and Medical band (ISM) [2.4 GHz–3.5 GHz] and Medical Implant Communications Service band (MICS) [394 MHz–407.61 MHz]. A short-circuited pin is used to minimize the antenna’s overall size and for further size reduction a capacitive load is used between the radiator and the ground plane. For biocompatibility, a thin-thickness layer of Alumina is used as a superstrate. The suggested antenna is tested in a multi-layer tissue model and the Specific Absorption Rate (SAR) value is computed. The proposed antenna was fabricated, and the reflection coefficient is measured and compared with simulated results.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献