Many-to-Many Data Aggregation Scheduling Based on Multi-Agent Learning for Multi-Channel WSN

Author:

Lu YaoORCID,Wang Keweiqi,He Erbao

Abstract

Many-to-many data aggregation has become an indispensable technique to realize the simultaneous executions of multiple applications with less data traffic load and less energy consumption in a multi-channel WSN (wireless sensor network). The problem of how to efficiently allocate time slot and channel for each node is one of the most critical problems for many-to-many data aggregation in multi-channel WSNs, and this problem can be solved with the new distributed scheduling method without communication conflict outlined in this paper. The many-to-many data aggregation scheduling process is abstracted as a decentralized partially observable Markov decision model in a multi-agent system. In the case of embedding cooperative multi-agent learning technology, sensor nodes with group observability work in a distributed manner. These nodes cooperated and exploit local feedback information to automatically learn the optimal scheduling strategy, then select the best time slot and channel for wireless communication. Simulation results show that the new scheduling method has advantages in performance when comparing with the existing methods.

Funder

National Natural Science Foundation of China

Science and Technology Foundation of Guizhou Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3