LBCNIN: Local Binary Convolution Network with Intra-Class Normalization for Texture Recognition with Applications in Tactile Internet

Author:

Neshov Nikolay1ORCID,Tonchev Krasimir1ORCID,Manolova Agata1ORCID

Affiliation:

1. Faculty of Telecommunications, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria

Abstract

Texture recognition is a pivotal task in computer vision, crucial for applications in material sciences, medicine, and agriculture. Leveraging advancements in Deep Neural Networks (DNNs), researchers seek robust methods to discern intricate patterns in images. In the context of the burgeoning Tactile Internet (TI), efficient texture recognition algorithms are essential for real-time applications. This paper introduces a method named Local Binary Convolution Network with Intra-class Normalization (LBCNIN) for texture recognition. Incorporating features from the last layer of the backbone, LBCNIN employs a non-trainable Local Binary Convolution (LBC) layer, inspired by Local Binary Patterns (LBP), without fine-tuning the backbone. The encoded feature vector is fed into a linear Support Vector Machine (SVM) for classification, serving as the only trainable component. In the context of TI, the availability of images from multiple views, such as in 3D object semantic segmentation, allows for more data per object. Consequently, LBCNIN processes batches where each batch contains images from the same material class, with batch normalization employed as an intra-class normalization method, aiming to produce better results than single images. Comprehensive evaluations across texture benchmarks demonstrate LBCNIN’s ability to achieve very good results under different resource constraints, attributed to the variability in backbone architectures.

Funder

the European Union-Next Generation EU, through the National Recovery and Resilience Plan of the Republic of Bulgaria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3