CGAcc: A Compressed Sparse Row Representation-Based BFS Graph Traversal Accelerator on Hybrid Memory Cube

Author:

Qian Cheng,Childers Bruce,Huang Libo,Guo HuiORCID,Wang Zhiying

Abstract

Graph traversal is widely used in map routing, social network analysis, causal discovery and many more applications. Because it is a memory-bound process, graph traversal puts significant pressure on the memory subsystem. Due to poor spatial locality and the increasing size of today’s datasets, graph traversal consumes an ever-larger part of application execution time. One way to mitigate this cost is memory prefetching, which issues requests from the processor to the memory in anticipation of needing certain data. However, traditional prefetching does not work well for graph traversal due to data dependencies, the parallel nature of graphs and the need to move vast amounts of data from memory to the caches. In this paper, we propose a compressed sparse row representation-based graph accelerator on the Hybrid Memory Cube (HMC), called CGAcc. CGAcc combines Compressed Sparse Row (CSR) graph representation with in-memory prefetching and processing to improve the performance of graph traversal. Our approach integrates the prefetching and processing in the logic layer of a 3D stacked Dynamic Random-Access Memory (DRAM) architecture, based on Micron’s HMC. We selected HMC to implement CGAcc because it can provide quite high bandwidth and low access latency. Furthermore, this device has multiple DRAM layers connected to internal logic to control memory access and perform rudimentary computation. Using the CSR representation, CGAcc deploys prefetchers in the HMC to exploit the short transaction latency between the logic and DRAM layers. By doing this, it can also avoid large data movement costs. In the runtime, CGAcc pipelines the prefetching to fetch data from DRAM arrays to improve memory-level parallelism. To further reduce the access latency, several optimized internal caches are also introduced to hold the prefetched data to be Processed In-Memory (PIM). A comprehensive evaluation shows the effectiveness of CGAcc. Experimental results showed that, compared to a conventional HMC main memory equipped with a stream prefetcher, CGAcc achieved an average 3.51× speedup with moderate hardware cost.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference44 articles.

1. Hybrid Memory Cube Specification 2.1;Consortium,2014

2. A Primer on Hardware Prefetching

3. A survey of graph processing on graphics processing units

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Rise of NoSQL Systems;Journal of Database Management;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3