Abstract
DDoS (distributed denial of service) attacks consist of a large number of compromised computer systems that launch joint attacks at a targeted victim, such as a server, website, or other network equipment, simultaneously. DDoS has become a widespread and severe threat to the integrity of computer networks. DDoS can lead to system paralysis, making it difficult to troubleshoot. As a critical component of the creation of an integrated defensive system, it is essential to detect DDoS attacks as early as possible. With the popularization of artificial intelligence, more and more researchers have applied machine learning (ML) and deep learning (DL) to the detection of DDoS attacks and have achieved satisfactory accomplishments. The complexity and sophistication of DDoS attacks have continuously increased and evolved since the first DDoS attack was reported in 1996. Regarding the headways in this problem, a new type of DDoS attack, named adversarial DDoS attack, is investigated in this study. The generating adversarial DDoS traffic is carried out using a symmetric generative adversarial network (GAN) architecture called CycleGAN to demonstrate the severe impact of adversarial DDoS attacks. Experiment results reveal that the synthesized attack can easily penetrate ML-based detection systems, including RF (random forest), KNN (k-nearest neighbor), SVM (support vector machine), and naïve Bayes. These alarming results intimate the urgent need for countermeasures against adversarial DDoS attacks. We present a novel DDoS detection framework that incorporates GAN with a symmetrically built generator and discriminator defense system (SDGAN) to deal with these problems. Both symmetric discriminators are intended to simultaneously identify adversarial DDoS traffic. As demonstrated by the experimental results, the suggested SDGAN can be an effective solution against adversarial DDoS attacks. We train SDGAN on adversarial DDoS data generated by CycleGAN and compare it to four previous machine learning-based detection systems. SDGAN outperformed the other machine learning models, with a TPR (true positive rate) of 87.2%, proving its protection ability. Additionally, a more comprehensive test was undertaken to evaluate SDGAN’s capacity to defend against unseen adversarial threats. SDGAN was evaluated using non-training data-generated adversarial traffic. SDGAN remained effective, with a TPR of around 70.9%, compared to RF’s 9.4%.
Funder
Minister of Science and Technology, Taiwan
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference33 articles.
1. A Note on Denial-of-Service in Operating Systems
2. System for DDoS attack mitigation by discovering the attack vectors through statistical traffic analysis
3. DDoS Report 1st Half-Year 2021. Cyber Resilience Made in Germany—Link11
https://www.link11.com/en/downloads/ddos-report-1st-half-2021/
4. A Survey on Mitigation Techniques against DDoS Attacks on Cloud Computing Architecture;Bakr;Int. J. Adv. Sci. Technol.,2019
5. Machine Learning based DDOS Detection
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献