Abstract
In this paper, we propose an approach that uses generative adversarial nets (GAN) to eliminate multipath ghosts with respect to through-wall radar imaging (TWRI). The applied GAN is composed of two adversarial networks, namely generator G and discriminator D. Generator G learns the spatial characteristics of an input radar image to construct a mapping from an input to output image with suppressed ghosts. Discriminator D evaluates the difference (namely, the residual multipath ghosts) between the output image and the ground-truth image without multipath ghosts. On the one hand, by training G, the image difference is gradually diminished. In other words, multipath ghosts are increasingly suppressed in the output image of G. On the other hand, D is trained to improve in evaluating the diminishing difference accompanied with multipath ghosts as much as possible. These two networks, G and D, fight with each other until G eliminates the multipath ghosts. The simulation results demonstrate that GAN can effectively eliminate multipath ghosts in TWRI. A comparison of different methods demonstrates the superiority of the proposed method, such as the exemption of prior wall information, no target images with degradation, and robustness for different scenes.
Funder
National Natural Science Foundation of China
the Key Research and Development Project of Sichuan Science and Technology Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献