C60/CZTS Junction Combination to Improve the Efficiency of CZTS-Based Heterostructure Solar Cells: A Numerical Approach

Author:

Rafi Jobair Al1ORCID,Islam Md. Ariful2ORCID,Mahmud Sayed2,Honda Mitsuhiro1ORCID,Ichikawa Yo1,Athar Uddin Muhammad2

Affiliation:

1. Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

2. Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh

Abstract

This work presents a copper zinc tin sulfide (CZTS)-based solar cell structure (AI/ITO/C60/CZTS/SnS/Pt) with C60 as a buffer layer, developed using the SCAPS-1D simulator by optimizing each parameter to calculate the output. Optimizing the parameters, the acceptor concentration and thickness were altered from 6.0 × 1015 cm−3 to 6.0 × 1018 cm−3 and 1500 nm to 3000 nm, respectively. Although, in this simulator, we can tune the value for the acceptor concentration to 6.0 × 1022, higher doping might present an issue regarding adjustment in the physical experiment. Thus, tunable parameters need to be chosen according to the reliability of the experimental work. The defect density varied from 1.0 × 1014 cm−3 to 1.0 × 1017 cm−3 and the auger hole/electron capture coefficient was determined to be 1.0 × 10−26 cm6 s−1 for the maintenance of the minorities in theoretical to quasi-proper experimental measurements. Although the temperature was intended to be kept near room temperature, this parameter was varied from 290 K to 475 K to investigate the effects of the temperature on this cell. The optimization of the proposed structure resulted in a final acceptor concentration of 6.0 × 1018 cm−3 and a thickness of 3000 nm at a defect density of 1.0 × 1015 cm−3, which will help to satisfy the desired experimental performance. Satisfactory outcomes (VOC = 1.24 V, JSC = 27.03 mA/cm2, FF = 89.96%, η = 30.18%) were found compared to the previous analysis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3