Sliding Mode Speed Control for PMSM Based on Model Predictive Current

Author:

Zhou Weihong12,Song Zhe2,Xiao Xi2ORCID,Guo Yougui1,Mo Yu3

Affiliation:

1. College of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China

2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

3. Beijing Institute of Mechanical Equipment, Beijing 100854, China

Abstract

To enhance the dynamic performance and disturbance rejection capability of the permanent magnet synchronous motor speed control system, a novel speed control method based on a novel sliding mode control (NSMC) and load torque observer is proposed on the basis of model predictive current control (MPCC) with a sliding mode disturbance observer. First, on the basis of MPCC, the influence of parameters such as resistance, inductance, and flux linkage on MPCC is analyzed. To address the aggregated disturbance caused by parameter mismatches, a piecewise square-root switching function sliding mode disturbance observer (SMDO) is designed to enhance the robustness of the parameters. To address the poor dynamic performance and inadequate robustness resulting from the proportional-integral-controller (PI) velocity loop control in the MPCC, a novel NSMC velocity control method is proposed. This method utilizes the hyperbolic sine function and fractional-order integral sliding mode surface, resolving the dilemma faced by traditional slide mode controllers (SMC) in balancing fast response and reduced vibration. Additionally, to enhance the system’s disturbance rejection capability, a sliding mode torque observer (SMTO) is designed to continuously update the observed load torque value into the NSMC controller, achieving speed compensation control. Finally, through comparative experiments among the proportional integral controller (PI), SMC, NSMC, and NSMC + SMTO, the results indicate that the proposed NSMC + SMTO exhibits the best speed response, steady-state characteristics, and disturbance rejection capability.

Funder

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3