Prediction of Nugget Diameter and Analysis of Process Parameters of RSW with Machine Learning Based on Feature Fusion

Author:

Zhu Qinmiao12ORCID,Shen Huabo1,Zhu Xiaohui3,Wang Yuhui12

Affiliation:

1. Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Wuhan Digital Design and Manufacturing Innovation Center Co., Ltd., Wuhan 430206, China

3. Wuhan Huaweike Intelligent Technology Co., Ltd., Wuhan 430070, China

Abstract

The welding quality during welding body-in-white (BIW) determines the safety of automobiles. Due to the limitations of testing cost and cycle time, the prediction of welding quality has become an essential safety issue in the process of automobile production. Conventional prediction methods mainly consider the welding process parameters and ignore the material parameters, causing their results to be unrealistic. Upon identifying significant correlations between vehicle body materials, we utilize principal component analysis (PCA) to perform dimensionality reduction and extract the underlying principal components. Thereafter, we employ a greedy feature selection strategy to identify the most salient features. In this study, a welding quality prediction model integrating process parameters and material characteristics is proposed, following which the influence of material properties is analyzed. The model is verified based on actual production data, and the results show that the accuracy of the model is improved through integrating the production process characteristics and material characteristics. Moreover, the overfitting phenomenon can be effectively avoided in the prediction process.

Publisher

MDPI AG

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3