YOLO Adaptive Developments in Complex Natural Environments for Tiny Object Detection

Author:

Zhong Jikun1,Cheng Qing12,Hu Xingchen1,Liu Zhong12

Affiliation:

1. Laboratory for Big Data and Decision, National University of Defense Technology, 109 Deya Road, Changsha 410003, China

2. Hunan Institute of Advanced Technology, 699 Qingshan Road, Changsha 410003, China

Abstract

Detection of tiny object in complex environments is a matter of urgency, not only because of the high real-world demand, but also the high deployment and real-time requirements. Although many current single-stage algorithms have good detection performance under low computing power requirements, there are still significant challenges such as distinguishing the background from object features and extracting small-scale target features in complex natural environments. To address this, we first created real datasets based on natural environments and improved dataset diversity using a combination of copy–paste enhancement and multiple image enhancement techniques. As for the choice of network, we chose YOLOV5s due to its nature of fewer parameters and easier deployment in the same class of models. Most improvement strategies to boost detection performance claim to improve the performance of privilege extraction and recognition. However, we prefer to consider the combination of realistic deployment feasibility and detection performance. Therefore, based on the hottest improvement methods of YOLOV5s, we try to make adaptive improvements in three aspects, namely attention mechanism, head network, and backbone network. The experimental results proved that the decoupled head and Slimneck based improvements achieved, respectively, 0.872 and 0.849, 0.538 and 0.479, 87.5% and 89.8% on the mAP0.5, mAP0.5:0.95, and Precision metrics, surpassing the results of the baseline model on these three metrics: 0.705, 0.405 and 83.6%. This result suggests that the adaptively improved model can better meet routine testing needs without significantly increasing the number of parameters. These models perform well on our custom dataset and are also effective on images that are difficult to detect by naked eye. Meanwhile, we find that YOLOV8s, which also has the decoupled head improvement, has the results of 0.743, 0.461, and 87.17% on these three metrics. It proves that under our dataset, it is possible to achieve more advanced results with lower number of model parameters just by adding decoupled head. And according to the results, we also discuss and analyze some improvements that are not adapted to our dataset, which also provides ideas for researchers in similar scenarios: in the booming development of object detection, choosing the suitable model and adapting to combine with other technologies would help to provide solutions to real-world problems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference41 articles.

1. Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23–28). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.

2. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27–30). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv.

4. Thermal Object Detection in Difficult Weather Conditions Using YOLO;Pobar;IEEE Access,2020

5. Image-adaptive YOLO for object detection in adverse weather conditions;Liu;AAAI Conf. Artif. Intell.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3