A Fast Evaluation Method for Spatial Point Measurement Accuracy in a Large-Scale Measurement System

Author:

Liu Yusong12,Guo Wenbo2,Pang Yuanyuan2,Zheng Bo2

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Chengdu Aircraft Manufacturing Industry (Group) Co., Ltd., Chengdu 610091, China

Abstract

In the application domain of large-scale high-precision measurement systems, accurately calibrating the precision of point position measurements is a pivotal issue. Traditional calibration methods rely on laser interferometers and high-precision displacement stages, which are not only costly but also challenging to implement in fixed measurement systems. Addressing this challenge, this study introduces an evaluation method for the spatial point measurement accuracy in large-scale fixed high-precision measurement systems. The models for the relationship between the limit deviation and the maximum deviation of finite measurements were established, as well as the limit deviation and point position measurement accuracy. The spatial point position accuracy of the measurement field was calculated by the measurement errors of a calibration rod. The algorithm was validated using a large-scale measurement platform based on photogrammetric technology. Experimental results demonstrate that the method achieved a point position measurement accuracy calibration better than 0.1 mm within a 20 m measurement range, effectively enhancing the measurement data’s accuracy and reliability. This research optimizes the calibration process for large-scale fixed measurement systems, improves calibration efficiency, and obviates the need for complex equipment to complete the calibration process, which is of considerable importance to the development of high-precision spatial point position measurement technology.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3